141 research outputs found

    Power maximised and anti-saturation power conditioning circuit for current transformer harvester on overhead lines

    Get PDF
    The current transformer (CT) harvester is an effective and efficient solution due to its higher reliability and power density compared to other techniques. However, the current of overhead conductor fluctuates from tens of to thousands of amperes, which brings two challenges for the CT harvester design. First, the startup current, above which the harvester can independently power the monitoring devices, should be as low as possible, so that the battery capacity can be reduced; secondly, the magnetic core should be ensured unsaturated in high current condition. This paper proposes a power conditioning circuit with comprehensive control to maximize the output power and prevent the core from saturation. A prototype that can deliver 22.5 W power with 200 A is designed, and a control strategy based on the finite-state machine is implemented. Experimental results show that the startup current for 2 W load is about 30 A, and the core power density at 60 A is 45.96 mW/cm3, both of which are markedly improved compared to the reported results of the same condition

    Novel communication method between power converters for DC micro-grid applications

    Get PDF
    Communication between power converters is vital for high performance DC micro-grids controls. However, for residential DC micro-grid applications, using external communication link would increase the system cost, and reduce the system flexibility and reliability. This paper presents a novel method to enable the conventional DC/DC converters to transmit data via the common DC Bus. With this technology, cost-effective low bandwidth communication links between power converters can be established within a DC micro-grid, and advanced distributed control algorithms can be developed. A reliable communication with 2 kbps transmission rate has been implemented between the Boost converters through the common input DC bus

    DC power line communication based on power/signal dual modulation in phase shift full bridge converters

    Get PDF
    For intelligent DC distributed power systems, data communication plays a vital role in system control and device monitoring. To achieve communication in a cost effective way, power/signal dual modulation (PSDM), a method that integrates data transmission with power conversion, can be utilized. In this paper, an improved PSDM method using phase shift full bridge (PSFB) converter is proposed. This method introduces a phase control based freedom in the conventional PSFB control loop to realize communication using the same power conversion circuit. In this way, decoupled data modulation and power conversion are realized without extra wiring and coupling units, and thus the system structure is simplified. More importantly, the signal intensity can be regulated by the proposed perturbation depth, and so this method can adapt to different operating conditions. Application of the proposed method to a DC distributed power system composed of several PSFB converters is discussed. A 2kW prototype system with an embedded 5kbps communication link has been implemented, and the effectiveness of the method is verified by experimental results

    Direct sequence spread spectrum based PWM strategy for harmonic reduction and communication

    Get PDF
    Switched mode power supplies (SMPSs) are essential components in many applications, and electromagnetic interference is an important consideration in the SMPS design. Spread spectrum based PWM strategies have been used in SMPS designs to reduce the switching harmonics. This paper proposes a novel method to integrate a communication function into spread spectrum based PWM strategy without extra hardware costs. Direct sequence spread spectrum (DSSS) and phase shift keying (PSK) data modulation are employed to the PWM of the SMPS, so that it has reduced switching harmonics and the input and output power line voltage ripples contain data. A data demodulation algorithm has been developed for receivers, and code division multiple access (CDMA) concept is employed as communication method for a system with multiple SMPSs. The proposed method has been implemented in both Buck and Boost converters. The experimental results validated the proposed DSSS based PWM strategy for both harmonic reduction and communication

    Embedding Power Line Communication in Photovoltaic Optimizer by Modulating Data in Power Control Loop

    Get PDF
    In Photovoltaic (PV) system, dc-dc power optimizer (DCPO) is an option to maximize output power. At the same time, data links among DCPOs are often required for system monitoring and controlling. This paper proposes a novel power line communication (PLC) method for the DCPOs, in which the data of a DCPO is modulated into the control loop of power converter, and then transmitted through the series-connected dc power line to other DCPOs. In the process of communication, differential phase shift keying (DPSK) modulation and discrete Fourier transformation (DFT) demodulation are employed. To analyze the quality of communication, the communication model of the system is built, based on small-signal model. Furthermore, the noises of the system, including switching, maximum power point tracking (MPPT) and additive white Gaussian noise (AWGN), are discussed and measured to evaluate the signal-to-noise ratio (SNR). At last, an experimental system including 6 DCPOs is established and tested, which verifies the feasibility and effectiveness of the proposed method

    A graph theory based energy routing algorithm in Energy Local Area Network (e-LAN)

    Get PDF
    The energy internet concept has been considered as a new development stage of the Smart Grid, which aims to increase the energy transmission efficiency and optimise the energy dispatching in time and space. Energy router is a core device in the energy internet and it connects all the devices together into a net structure and manages power flows among them. The research work presented in this paper described the energy router’s structure and function expectations from the network perspective, and improved the existing energy router design. Open-shortest-path first (OSPF) protocol and virtual circuit switching mode are referenced from the Internet in the energy local area network (e-LAN) design. This paper proposed a design of an energy routing algorithm based on graph theory in an e-LAN. A lowest-cost routing selection algorithm is designed according to the features of power transmission, and a source selection and routing design algorithm is proposed for very heavy load conditions. Both algorithms have been verified by case analyses

    Wireless power and data transfer via a common inductive link using frequency division multiplexing

    Get PDF
    For wireless power transfer (WPT) systems, communication between the primary side and the pickup side is a challenge because of the large air gap and magnetic interferences. A novel method, which integrates bidirectional data communication into a high-power WPT system, is proposed in this paper. The power and data transfer share the same inductive link between coreless coils. Power/data frequency division multiplexing technique is applied, and the power and data are transmitted by employing different frequency carriers and controlled independently. The circuit model of the multiband system is provided to analyze the transmission gain of the communication channel, as well as the power delivery performance. The crosstalk interference between two carriers is discussed. In addition, the signal-to-noise ratios of the channels are also estimated, which gives a guideline for the design of mod/demod circuits. Finally, a 500-W WPT prototype has been built to demonstrate the effectiveness of the proposed WPT system

    Power conversion and signal transmission integration method based on dual modulation of DC-DC converters

    Get PDF
    For the development of communication systems such as Internet of Things, integrating communication with power supplies is an attractive solution to reduce supply cost. This paper presents a novel method of power/signal dual modulation (PSDM), by which signal transmission is integrated with power conversion. This method takes advantage of the intrinsic ripple initiated in switch mode power supplies as signal carriers, by which cost-effective communications can be realized. The principles of PSDM are discussed, and two basic dual modulation methods (specifically PWM/FSK and PWM/PSK) are concluded. The key points of designing a PWM/FSK system, including topology selection, carrier shape, and carrier frequency, are discussed to provide theoretical guidelines. A practical signal modulation-demodulation method is given, and a prototype system provides experimental results to verify the effectiveness of the proposed solution

    A Novel Thermal Energy Storage System in Smart Building Based on Phase Change Material

    Get PDF
    corecore